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Thermal conductivity in a chain of alternately free and bound particles

D. J. R. Mimnagh and L. E. Ballentine
Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 23 June 1997!

The thermal conductivityk of a lattice of alternately free and harmonically bound particles placed between
two temperature reservoirs is calculated for various chain lengths and dimensionless energy«. It is found that
Fourier’s law is obeyed for all« as long as the lattice is long enough. However, this length scale undergoes a
transition from essentially an« independence for«,«c to a power-law dependence for«.«c , meaning that
larger lattices are needed to get normal thermal conductivity for large«. This transition is seen to coincide with
a change in scaling law for the maximum Lyapunov exponentl. This behavior ofl is known to correspond
to a transition to total chaos, where all stable regions of phase space have vanished. It is surmised that this
measure of the dynamics can be used as a probe of the Fourier law properties of other systems.
@S1063-651X~97!11011-X#

PACS number~s!: 05.45.1b, 05.60.1w, 66.10.Cb
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I. INTRODUCTION

Although Fourier’s law of heat conduction~heat current
being proportional to the thermal gradient! is very commonly
observed, it is far from clear what properties of the dynam
cal system are responsible for the observed behavior. ‘‘N
ther phenomenological nor fundamental transport theory
predict whether or not a given classical many-body Ham
tonian system yields an energy transport governed by
Fourier heat law.’’ So reads the first sentence of the pape
Casati, Ford, Vivaldi, and Visscher@1# ~CFVV!, in which
they introduced the so-called ‘‘ding-a-ling’’ model, as th
simplest system in which the Fourier heat conduction l
could be demonstrated. The model consists of a o
dimensional chain of atoms, alternately free and harmo
cally bound, which interact through hard elastic collision
CFVV demonstrated that this model exhibits chaotic dyna
ics and presented numerical evidence that, for modera
long chains, the thermal conductivity approaches a value
dependent of the length of the chain.

The numerical study of the relation between dynam
and nonequilibrium statistical mechanics began with
work of Fermi, Pasta, and Ulam~FPU!, lucidly reviewed by
Ford @2#. FPU studied a harmonic chain with weak nonli
earity. Instead of the expected equipartition of energy am
the modes, they found a recurrent behavior, which is n
known to be related to the Kolmogorov-Arnold-Mos
~KAM ! theorem, but which was originally very puzzling
Because of the difficulties found by FPU and others, ma
people came to believe that normal thermal conductiv
could not occur in one dimension@3#. However, Mokross
and Büttner @4# gave evidence that the diatomic Toda latti
exhibited a transition to normal thermal conductivity, whi
later was verified by the more detailed numerical investi
tion of Jackson and Mistriotis@5#. The most persuasive work
however, was that of CFVV who gave arguments for a dir
connection between normal thermal conductivity and
namical chaos in a very simple system. They also show
that the value of the thermal conductivity given by t
Green-Kubo formula is in agreement with that obtained
rectly from numerical simulation.
561063-651X/97/56~5!/5332~11!/$10.00
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The original purpose of this work was to examine in mo
detail the relations between thermal conductivity and asp
of the dynamics, such as Lyapunov exponents. After rep
ducing the results of CFVV, and extending them, we we
surprised to discover that the conductivity value that th
had reported as the long-chain limit was actually only a tr
sitory plateau. The thermal conductivity does indeed c
verge to a long-chain limit, but only at lengths considerab
greater than those reported by CFVV. Moreover, the
proach to the long-chain limit can be nonmonotonic as
function of length.

The ding-a-ling model is introduced in Sec. II of this p
per. In Sec. III we present results for the thermal conduc
ity, which confirm the earlier results of CFVV, as far as th
went, but also show surprising results in regions that they
not explore. We treat the dependence of the conductivity
the spring stiffness, temperature, and chain length in con
erable detail. In Sec. III we study the dynamics of the mod
illustrating the transition between the weak-spring and st
spring limits in several different ways. Finally, we summ
rize the conclusions.

II. THE DING-A-LING MODEL

The ding-a-ling lattice consists of a set of alternately fr
and bound particles. The Hamiltonian for theN-particle
ding-a-ling model, as described by CFVV, is

H5
1

2 (
i 51

N

~v i
21v i

2xi
2!1~hard point core!, ~1!

where v i equalsv for even i and zero for oddi and all
particles have unit mass. Two versions of this model will
studied. To calculate the thermal conductivity, we use
open system, a chain with a free particle at each end, wh
interacts with a thermal reservoir. To calculate the Lyapun
exponent, we use a closed ring of particles. The open ch
contain an odd number of particles and the closed rings c
tain an even number of particles.

The dynamics of a closed ring depends on only a sin
dimensionless parameter«5E/v2l 0

2, whereE is the average
5332 © 1997 The American Physical Society
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56 5333THERMAL CONDUCTIVITY IN A CHAIN O F . . .
energy per particle andl 0 is the lattice spacing. CFVV fixE
and l 0 and usev as a variable parameter. We use« as our
fundamental parameter and have confirmed the scaling
varying bothE andv in some of our calculations.

In the case of the chain interacting with reservoirs,
total energy is not fixed, so we must infer its average va
from the temperature. The average temperatureTm is mid-
way between the temperature of the left and right reserv
TL andTR . If we assume equipartition then the average
ergy of the free particles is12 Tm , and the average energy o
the bound particles isTm . This leads to an average energy
a system particle of34 Tm . So the quantity

«5
3Tm

4v2
~2!

is used to parametrize our open system~we set l 051 and
Boltzmann’s constantkB51).

The parameter« should be regarded as a convention
reparametrization of the temperature as a dimensionless
ergy. It is only approximately equal to the energy dens
~more precisely, the dimensionless energy per particle!. The
average energy of a free particle is1

2 T. The average energ
of a bound particle ranges fromT in the low-density limit to
1
2 T in the high-density limit, where collisions prevent th
spring from stretching very far. As a result, the true ene
density ranges from« to 2

3 « as we go from the low- to the
high-density limits. No confusion will arise provided we r
gard the values of« for an open chain as merely reexpressi
the temperature in dimensionless units. Only when a re
computed at constantE is compared with one computed
constantT can any ambiguity of interpretation arise. This
done in Fig. 16, where it does not cause any trouble.

Between collisions the motion has an analytic solution,
in order to evolve it forward in time one must simply calc
late the time of the collision events and then evolve the s
tem from collision to collision. This means that the system
more naturally described in terms of a mapping than a
solution to a Hamiltonian with infinite potentials to represe
the hard collisions. However, since many of the physi
quantities are calculated per unit time, rather than per co
sion, it is necessary to have a mixed notation. A supersc
0 will identify quantities measured just after the collision a
this quantity will have aj subscript to identify which colli-
sion. For instance,xi j

0 andv i j
0 represent the position relativ

to its lattice site and velocity for particlei at the time just
after collision j , while xi(t) and v i(t) represent the sam
quantities at the arbitrary timet, measured relative to the firs
collision. The evolution of the position of particlei between
collision j and j 11 is

xi~ t !5H Ai j
0 sin@v~ t2t j !1f i j

0 #, i even

v i j
0 ~ t2t j !1xi j

0 , i odd
~3!

for t j,t<t j 11, whereAi j
0 and f i j

0 are the amplitude and
phase of the oscillator andt j is the time of the collisionj . In
order to calculate the time of collisionj we must find the
possible collision timet i j

0 for each particle pairi and i 11
such that
by
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xi~ t i j
0 !2xi 11~ t i j

0 !51, ~4!

the term 1 being the lattice spacing. Then we select the so
est collision time as the actual collision time for the syste
To complete the collision we must evolve the system to ti
t j and then exchange the velocities of the particles involv
in the collision. If we define the systems state~made up of all
its position and velocity coordinates! after collision j by Gj

0 ,
then

Gj
05 f ~Gj 21

0 ! ~5!

maps the physical system from the time of system collis
j 21 to system collisionj and swaps the velocities of th
pair of particles involved in the collision.

III. CALCULATION OF THE THERMAL CONDUCTIVITY

A. Method of calculation

The calculation of the thermal conductivity for the syste
is performed in a manner similar to that described by CFV
@1#. A temperature gradient¹T is placed across the lattic
and the energy fluxJ is then monitored. The thermal con
ductivity k is 2J/¹T. To establish the temperature gradie
heat reservoirs at different temperatures are placed at e
end of the lattice. These are random number generators
take the particles that enter the reservoir and eject them b
into the system with a velocity of the appropriate distrib
tion. The probability distribution used isP(v)5(uvu/
T)exp(2v2/2T), which is the velocity distribution for par-
ticles ejected from a pin hole in the side of an oven. T
difference between the energy of the particles entering
leaving during themth reservoir interactionDEm is used in
the calculation of the flux

Jn5
1

tn
(

m51

n

DEm ~6!

after n reservoir interactions. After eliminating the initia
transients, a sufficient number of collisions are calcula
such thatJn'J` . The value of the local temperature is ca
culated as twice the kinetic energy of each particle. Then
assume that the position of the particles is, on average, a
lattice site and perform a linear fit to the data. The slope
the effective temperature gradient¹Teff . It will, in general,
be different from the applied temperature gradient¹Tapp be-
cause there is a temperature jump at the ends of the lat
similar to a Kapitza resistance. They function merely as
interface between the reservoir and the system. For this
son the end particles are never included in any of our¹Teff
calculations.

To compare the results for different parameter values,
useful to consider dimensionless quantities. For exam
J/v3 is a dimensionless flux andk[k/v is a dimensionless
thermal conductivity. We have found, as expected, that
obtain approximately the samek for different Tm and v if
they are chosen such that« is constant.
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5334 56D. J. R. MIMNAGH AND L. E. BALLENTINE
B. Comparison with CFVV

CFVV presented results for the thermal conductivity a
function of the chain length~their Fig. 3!. We compared data
from their plot with our own data for the equivalent value
« and with the temperature of the left reservoirTL set to 2.5
and the rightTR set to 1.5. Our data~Fig. 1!, clearly agree
with the results of CFVV. However, it is premature to co
clude, as CFVV did, that this corresponds to the asympt
limit of the thermal conductivity. In Fig. 2 we show that th
is only a minimum and that bulk thermal conductivity cann
be said to have been observed untilN.200. The minimum is
deepest for large energy densities and disappears entirel
very small density, as can be seen in Fig. 3.

CFVV also produced a table ofk, J, and¹T values for
v510. These values were also confirmed by our calcu
tions.

C. Temperature dependence ofk

If Fourier’s lawJ52k¹T is valid, we would expect that
after initial transients have died out, there would be a u
form gradient of temperature along the chain. Figure 4 sho
that the local temperature~computed as twice the averag
kinetic energy of each particle! actually has a smooth non
linear variation with position. We interpret the curvature
being due to the temperature dependence of the conduct
k. If k increases withT, then the decrease ofk(T) from left
to right along the chain must be compensated by an incre
in the magnitude of¹T.

FIG. 1. Comparison of dimensionless thermal conductivityk
with the CFVV results forv51 («51.5).

FIG. 2. Thermal conductivityk for v51 («51.5) with very
large lattices.
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We have calculatedk(T) directly by varying the centra
temperature~Fig. 5!. To ensure that the variation ofk(T)
along the chain does not affect our results, we use a sm
temperature differenceDT. In Fig. 5 we see results fo
chains of 9 and 31 particles withDT50.2. The results are
different from what one might expect for an anharmonic l
tice. For example, the work of Maeda and Munakata@6#
shows a different relationship for smallT, k(T)}T21/2. This
is because they were modeling FPU’sb lattice ~harmonic
lattice with quartic anharmonicity!. For smallT, the anhar-
monic term will not contribute and one expects a divergenk
for an integrable~harmonic! lattice. For the ding-a-ling lat-
tice, as the energy is reduced the bound particles are m
tightly bound to there sites. This attenuates solitonlike
ergy transport, so one does not expectk to diverge asT→0;
in fact, we seek→0 in Fig. 5. On the other hand, the high
T regime should produce divergentk since, in this limit, the
lattice behaves like free particles on a wire~an integrable
system!.

As pointed out by Nishiguchi and Sakuma@7#, the curva-
ture in the temperature profile can be a source of error in
calculation ofk. In order to measure its effect we tried re
ducing the applied temperature difference. This incurre
greatly increased convergence time and was only prac
for short lattices. In any case, the computedk did not vary
appreciably. For longer chains a better solution was to
clude only the central 60% of the particles in the calculat
of ¹T. This section of the lattice has a much more linearT
profile and thus a more accurate value ofk could be calcu-
lated.

From Fig. 5 we see that the region betweenT51.5 and
2.5 is approximately linear and we shall use this to pred
the curvature ofT(x) in Fig. 4. Following a procedure de

FIG. 3. Thermal conductivity for various numbers of particl
N.
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scribed by Gebhart@8#, we approximatek(T) as

k~T!5kr1b~T2Tr !, ~7!

whereTr is the temperature of the rightmost (i 5N21) par-
ticle used in the calculation ofk andkr is k(Tr). From Fou-
rier’s law we have

E
Tl

T

k~T8!dT852E
2

x

J dx8, ~8!

where the leftmost (i 52) particle involved has a tempera
ture Tl . SinceJ is constant along the lattice, we have

2E
2

x

J dx852J~x22! ~9!

and using Eq.~7! we get

E
Tl

T

k~T8!dT85FkrT81bS T82

2
2TrT8D GU

Tl

T

. ~10!

FIG. 4. Temperature profile withv52. The solid line is a linear
fit through the data and the dashed line is a fit using Eq.~11! with
b the only variable parameter.

FIG. 5. Value ofk as a function ofT, for v52 and chain
lengths of 9 and 31 particles withDT50.2. The dashed line is a
linear fit through the points between 1.5 and 2.5 forN59.
We now use these two equations to solve forT(x),

T~x!52g6H g222F J

b
~x22!2

krTl

b
2S Tl

2

2
2TrTl D G J 1/2

,

~11!

whereg is kr /b2Tr . Notice that the fit forT is exact for
x52 ~the left end!, while k is exact forT5Tr ~the right end!.

The temperature profile data of Fig. 4 was fitted to fo
mula ~11!, using b as the only adjustable parameter. T
nonlinear least-squares fit yields the valueb53.0. This may
be compared to the slope of thek(T) curve in Fig. 5 at the
central temperatureTm52, which yieldsb52.8. The agree-
ment between the two independent determinations ofb is
satisfactory.

FIG. 6. Resistivity for long chains and large«. The solid line is
a least-squares fit forN21/2,0.12.

FIG. 7. Resistivity for long chains and medium«. Only every
second data point is displayed for«.4.5 to make the graph more
readable. The solid line is a least-squares fit forN21/2,0.12.
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D. Long-chain limit

In addition to confirming the results of CFVV, we wish t
determine the range of parameters« andN over which Fou-
rier’s law applies. Although Fig. 2 shows clearly that a co
stant value ofk has been reached in this case, it is mo
effective to plot the thermal resistivityr51/k as a function
of N21/2. We useN21/2 rather than 1/N as the variable be
cause it yields a good linear fit for largeN ~see Figs. 6–9!.
So the linear function

r~N!5mN21/21r` ~12!

is used to describe our largeN resistivity data. A positive
intercept of ther axis (r`.0) for N21/2→0 implies that the
conductivity has a finite limit for arbitrarily long chains. A
zero intercept implies thatk diverges asN→` and so Fou-
rier’s law would not apply. A negative intercept would imp
that k diverges for some finiteN. In fact, however, the ap
pearance of a negative intercept in Fig. 6 merely means
the data are insufficient to resolve an intercept very clos
zero.

The plots of resistivity~Figs. 6–9! give a fairly complete
picture of the behavior as we vary«. Figure 6 shows the
weak-spring limit, in which we might expect Fourier’s law
break down. These data demonstrate the limit of our num
cal capabilities, since we would need to calculatek for much
longer lattices in order to resolve whether the intercep

FIG. 8. Resistivity for long chains and small«. The solid line is
a least-squares fit forN21/2,0.20.

FIG. 9. Resistivity for long chains and very small«. The solid
line is a least-squares fit forN21/2,0.32.
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positive or negative. In Figs. 7 and 8 we can say with co
fidence that, for these values of«, we have a positive inter-
cept. We can also see a very distinct maximum inr, for
some values of«, which corresponds to the minima in Fig. 3
The maxima have disappeared in Fig. 9.

The intercepts in Figs. 6–9 tell us how the conductiv
behaves for an infinite lattice, so it is useful to plot it as
function of «, as in Fig. 10.~We have not included the in
tercepts from Fig. 6 since they are not accurate enough.! We
can see quite clearly the change in behavior from sma«
~stiff springs! to large « ~weak springs!. The power-law
variation in r` for «.«c implies that infinite conductivity
should occur only in the limit of vanishing spring constan
which is the integrable limit of the free-particle hard poi
gas. We introduce«c50.04 at this point since it functions
well as a benchmark for the breakdown of the stiff-spri
limit. Its value is derived from the scaling properties of th

FIG. 10. Resistivity for infinite chains~the intercept in Figs.
7–9!. The solid line is a least-squares fit for 1,«,10. The dashed
line is the analytic result from Eq.~24!.

FIG. 11. Square of the normalized slope in Eq.~24!. The open
circles correspond to a positive slope while the filled circles cor
spond to a negative slope. The dashed line is used only to guide
eye.
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56 5337THERMAL CONDUCTIVITY IN A CHAIN O F . . .
Lyapunov exponent and is discussed fully in Sec. IV E. W
will put a vertical bar in our plot at«c to distinguish the two
regimes: stiff and weak springs.

The slopem changes sign, withm"0 for «"«c . If we
rewrite Eq.~12! in a normalized form

r̄ ~N!5m̄N21/211, ~13!

where r̄ 5r/r` and m̄5m/r` , then for r̄ (N) to be within
somed of 1 we must takeN.Nd ,

Nd 5S m̄

d
D 2

. ~14!

Figure 11 shows that as« increases, for«.«c , we need
increasingly larger lattices to approximate the asympto
limit; however, for«,«c only short lattices are needed an
Nd is not strongly dependent on«. A dashed line is used in
Fig. 11 to emphasize that the slope does go through zero
show the dominant features. Fourier’s law is always obe
provided the lattices are long enough.

E. Stiff-spring limit

It is possible to deduce the value of the thermal cond
tivity by means of a simple argument, which should be va
in the limit of very stiff springs on the bound particles. W
assume that each bound particle behaves as a harmoni
cillator with a Maxwellian velocity distribution governed b
the local temperature. A free particle bounces back and f
between two bound particles. At each elastic collision it e
changes velocities with the bound particle and so on ave
it carries energy from the higher- to the lower-temperat
side.

Let v1 be the speed of a free particle traveling in t
positive direction~down the temperature gradient! andv2 be
its speed of return in the negative direction. The contribut
to the energy flux from this round-trip will be equal to th
difference between the energies carried in the two directio
divided by the time for the round-trip,

J5

1
2 v1

2 2 1
2 v2

2

2

v1
1

2

v2

. ~15!

The factor of 2 in the denominator comes from the dista
between the bound particles, which is two lattice units.

We can estimate the conductivity if we replace the velo
ties in Eq.~15! by their rms averagesv̄, which are related to
the temperature by equipartition,12 v̄ 25 1

2 T ~Boltzmann’s
constant has been set to unity!. Writing the temperature o
the left and right bound particles asT15T2¹T and T2

5T1¹T and neglecting the difference betweenv1 andv2

in the denominator, we obtainJ52¹T/2T21/2, whence the
conductivity becomes

k52
J

¹T
5AT

2
. ~16!

In terms of our dimensionless parametersk5k/v and «
53T/4v2, this becomes
e

c
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d
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k5A2

3
«. ~17!

A better approximation is obtained if we average the ene
currentJ in Eq. ~15! over the distributions ofv1 and v2 .
The appropriate distributionPT(v) is the probability that a
free particle will transit at speedv between two bound par
ticles. The Boltzmann distribution, which is the probabili
that a randomly selected particle will have instantaneous
locity v, differs from PT(v) by a factor proportional to the
transit time (v21). Hence the appropriate distribution is

PT~v !5
uvu
T

e~2v2/2T!. ~18!

Upon simplifying Eq. ~15!, we obtain the average energ
current

^J&5
1

4
@^v1

2 &^v2&2^v1&^v2
2 &#, ~19!

where the distributions forv1 andv2 are given by Eq.~18!
with temperaturesT1 andT2 , respectively. The calculation
of the averages in Eq.~19! are

^v2&52T, ~20!

^v&5ApT

2
, ~21!

so we have

J5Ap

8
@T1T2

1/22T1
1/2T2#. ~22!

If we now expandJ in a Taylor series in¹T, we have

J52ApT

8
¹T; ~23!

this results in an approximate value for the conductivity
k5ApT/8 or in dimensionless variables

k5Ap

6
«. ~24!

These are compared with the results of the numerical si
lations in Fig. 10, where one can see approximate agreem
with the slope corresponding to the exponent of1

2 in Eq. ~24!.
The essential assumption in this simple argument is

neglect of correlations among the particles. This assump
becomes more reasonable in the stiff limit, when the bou
particles oscillate very rapidly compared to the motion of t
free particles. But the systematic difference between Eq.~24!
and the numerical results in Fig. 10 indicates that correlat
effects are not entirely negligible, even in that limit.

IV. ANALYSIS OF THE DYNAMICS

In order to demonstrate the role of chaos in establish
Fourier’s law of heat conduction, we need to study a syst
that has both an integrable and a nonintegrable limit. T
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5338 56D. J. R. MIMNAGH AND L. E. BALLENTINE
ding-a-ling model becomes integrable in the zero spri
constant limit. As the spring stiffness increases, the dyn
ics becomes more chaotic. We wish to observe the trans
between two such regimes and to correlate the dynam
with the behavior of the thermal conductivity. The transiti
between the two regimes is continuous, rather than sharp
evidence for it can be found in many different aspects of
dynamics.

A. Particle paths

The ding-a-ling model was expected to support a Fou
law conductivity because the energy transport via soliton
pulses should be suppressed by the phase randomiz
caused by the oscillating bound particles. In Fig. 12 we
the displacement of particles as a function of time, with
‘‘left’’ and the ‘‘right’’ labels on the y axis marking the
position of the corresponding reservoirs and the ticks ma
ing the lattice sites.

FIG. 12. Lattice dynamics for a seven-particle chain with diffe
ent v: ~a! v50.5 («56.0), ~b! v52 («50.375), and~c! v55
(«50.06). The solid lines represent the paths of the free partic
while the dashed lines represent the bound particles.
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Particle trajectories cannot cross each other. They me
exchange velocities in elastic collisions. The apparen
smooth lines, in Fig. 12~a!, from one end of the lattice to the
other, represent the transmission of energy without it be
scattered or diffused. These solitonlike pulses are typica
the weak-spring limit. As the spring constant increases,
trajectories of the bound particles become more curved
shown in Fig. 12~b!. This causes the solitonlike pulses
propagate along curved paths in the space-time diagr
Sometimes the spatial direction of propagation is revers
corresponding to the reflection of solitonlike pulses. Ene
from the pulse is exchanged with the potential energy of
springs, making solitonlike pulses less effective as a mec
nism of energy transport. In the stiff-spring limit@Fig. 12~c!#,
the pulses are effectively destroyed and diffusive ene
transport is dominant. The transition between solitonl
pulses and diffusion being the dominant energy transp
mechanism will clearly depend on the length of the lattic
The weaker the spring, the longer the lattice must be in or
for energy diffusion to dominate. This is consistent with t
results of Figs. 6–9 and 11, which show that as the spr
becomes weaker, longer lattices are needed to approxim
the bulk conductivity limit.

B. Phase space

Poincare´ sections give a strong visual indication of th
chaos of the phase space. CFVV present Poincare´ sections,
for a two-particle system, showing the KAM tori circling
fixed point in the surface of sections. The destruction of t
fixed point, with increasing«, is an indication of the transi-
tion between two dynamical regimes.

From the Poincare´ section of CFVV, we know that at the
fixed point the velocity of the bound particle is equal to t
negative of the velocity of the free particle and the section
such that the particles have just collided. The sign of
relative velocities, as defined for the section, is such that
particles would collide on the left of the loop, as in Fi
13~a!. After colliding they exchange velocities and swin
around toward the right. By symmetry the particles mu
both be on their lattice sites at some intermediate time, a
Fig. 13~b!. Proceeding to the right, the particles collide aga
@Fig. 13~c!# and retrace their pathes back to the state
scribed by Fig. 13~a!. The fixed point thus maps the syste
from a configuration similar to that shown in Fig. 13~a! on to
itself.

To analytically explain the fixed point’s destruction w
need to evaluate the position of the fixed point in pha
space. Since the particles have just collided, their positi
must satisfy Eq.~4!,

xb2xf51, ~25!

s,

FIG. 13. Two particles on a periodic ring. The solid circle re
resents a bound particle, while the empty circle represents a
particle.
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wherexf andxb are the position of the free and bound pa
ticles relative to their respective lattice sites. Also, the
locities are equal in size but opposite in direction, so

2v f5vb5v, ~26!

where v f and vb are the velocities of the free and boun
particles after the collision. From energy conservation
have

E5
1

2
v21

1

2
v21

1

2
v2xb

252, ~27!

where we have made use of the initial condition on the
ergy as specified by CFVV. Solving forv yields

v5S 22
1

2
v2xb

2D 1/2

. ~28!

The time t to travel from ~b! to ~a! is the same for both
particles, hence

t5
xf

2v
5

1

v
arctan

vxb

v
. ~29!

Using this with Eqs. Eq.~28! and ~25! and solving numeri-
cally for v, xf , and xb we can predict the position of th
fixed point in phase space. There are no real solutions
«.0.151 ~corresponding tov.2.57 for an energy per par
ticle of 1 as specified by CFVV!, which is consistent with
the Poincare´ sections. This dimensionless energy«p50.151
is a convenient marker to identify the values of« for which
we may expect to see changes in the properties of the ph
cal quantities of our system. It will be particularly releva
measurements made to short chains.

C. Energy density

As mentioned in Sec. II, the true energy density is eq
to « in the stiff-spring limit, but is only2

3 of « in the free
particle limit. By calculating

FIG. 14. Ratio of the true energy density to« for a 99-particle
reservoir system.
-

e

-

or

si-

l

a5
E/v2

«
, ~30!

whereE is the energy per particle, we will have a measure
which regime we are in for a particular«. In Fig. 14 we can
see that there is a transition region around«51 separating
the two limits. The total energy of the system can be attr
uted to three different sources. In the stiff-spring limit1

3 of
the total comes from the kinetic energy of the free particl
1
3 from the kinetic energy of the bound particles, and1

3 from
the potential-energy of the bound particles. In the we
spring limit («→`) the potential energy contribution be
comes negligible. This leads toa`5 2

3 in this limit and a0
51 in the opposite limit where the potential energy is n
restricted.

From Fig. 14 we see the value ofa is slightly greater than
1 in the stiff-spring limit, which may be attributed to th
temperature dependance ofk. This causes the average tem
perature of the lattice to be larger than the average of the
reservoirsTm .

This quantitya plays a role in our calculation when w
wish to know the temperature of a periodic chain becaus
this case we specify the energy via the initial conditions
the temperature. Rewriting Eq.~30! using the definition of«
@Eq. ~2!#, we have

Tm5
4E

3a
. ~31!

D. Collision rate

The collision rate also shows a transition region that
vides the two asymptotic limits. The definition of the coll
sion rate per particle is

R5
1

2t
, ~32!

wheret is the typical time between collisions and each c
lision takes place between two particles. In order to de
mine the asymptotic limits we need to estimatet.

FIG. 15. Reduced collision rate per particle for a 98-parti
periodic ring.
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5340 56D. J. R. MIMNAGH AND L. E. BALLENTINE
In the stiff-spring limit of«→0, with a free and a bound
particle originally at their respective origins, the position
the collision is determined by the amplitude of the oscillat
That is, since the oscillator’s deviation from equilibrium
small, due to the strong spring, we can assume that a typ
collision also takes place near the equilibrium position of
oscillator. We can estimate the time between such collisi
as the time it takes the free particle to travel from its latt
site to the bound particles lattice site and back. To do this
make use of the collision definition~4!,

v f

t

2
2051, ~33!

wherev f is the velocity of the free particle and the timet
includes both the time to travel from the origin to the col
sion and back. We have chosen particlei to be a free particle
and particlei 11 to be a bound particle, sov f is a positive
quantity, and from equipartition of energy we havev f

5ATm. This leads to a collision rate ofR05ATm/4 in the
stiff-spring limit.

We now approximateR` , the collision rate in the«→`
limit. The bound particle behaves like a free particle,v f'
2vb'ATm; thus

v f

t

2
2vb

t

2
51 ~34!

which leads to a value ofR`5ATm/2.
We would like to remove the« dependence present in th

limiting values in the form ofATm. Since it isE and notTm
that we specify in the closed system, we define the redu
collision rateR as

R5
R

AE
5

R

A3

4
aTm

, ~35!

where we made use of Eq.~31!. This quantity is calculated
for a 98-particle chain in Fig. 15 and shows two distin
limiting values. Using Eq.~35! we have estimates ofR in the
two limits

R05
1

4A3

4
a0

5
1

A12
, ~36!

R`5
1

2A3

4
a`

5
1

A2
, ~37!

which can be seen to agree well with the asymptotes in
15. The discrepancies are probably due to the neglected
relations.
f
.

al
e
s

e

ed

t

g.
or-

E. Lyapunov exponents

The maximum Lyapunov exponentl is a common indi-
cator of the onset of chaos and would appear to be an i
candidate for a dynamical indicator of the transition to n
mal thermal conductivity. We see from the definition ofl,

l5 lim
dG→0
t→`

1

t
lnS iG~G01dG,t !2G~G0 ,t !i

idGi D , ~38!

that l is a long-time average measuring the exponential r
of separation of trajectories that are initially close in pha
space. So we havel.0 in a chaotic region andl50 in a
stable region. However, the relevant time scales for the c
duction of heat via a lattice are the time for a particle to cro
a lattice spacing or the transit time of solitonlike puls
across the lattice. These times are short, so the relevanc
the long-time averagel on its own is uncertain, but will be
made clear in what follows.

1. Calculation of l

The Lyapunov exponent was calculated on a per collis
basislC , which eliminates some technical problems wi
attempts to calculate the Lyapunov exponent on a per
time basisl t . The definition oflC is

lC5 lim
dG→0
n→`

1

n
lnS iGn

0~G01dG!2Gn
0~G0!i

idGi D , ~39!

where n is the collision index. The calculation of th
Lyapunov exponent for a map is outlined by Rasband@9#.
Briefly, one evolves both a fiducial and a perturbed traject
from just after one collision to just after the next collisio
Then one renormalizes the perturbed trajectory with a sc
factor. The maximum Lyapunov exponent is simply the su
of the logarithm of these scales divided by the total num
of collisions.

The problem with the direct calculation ofl t results from
the fact that the time between collisions for the perturbed
fiducial trajectories will be slightly different. This may mak
the renormalization step impossible without having the p
ticles pass through one another, which is forbidden. We h
estimatedl t by calculating the product oflC and the colli-
sion rate. This is an acceptable approximation as long as
difference between the time of collision for the perturbed a
fiducial trajectories does not contribute on average.

The numerical computation ofl can be tricky. The com-
puted value may appear to be converging to a limit, only
abruptly shift to another value. This sequence of appar
convergences may depend on the initial conditions, e
within a single chaotic region of phase space. Only when
trajectory has sampled all of the available phase space
we be sure of true convergence and that is hard to ensur
a many-particle system. We have verified that our results
l are not sensitive to changes in the initial conditions, size
the displacement of the perturbed trajectory from the fiduc
trajectory, and the type of norm used to measure the sep
tion between trajectories.
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2. Results for thel calculation

Like the energy density and the collision rate, t
Lyapunov exponent displays a change in behavior during
transition between the two limits. In Fig. 16 we see thatlC
obeys a power law with a sharp change in slope. A pow
law fit of the data for the two limits is also shown in Fig. 1
to emphasize the behavior.l t also obeys a power law, with
some deviations; however, the deviations are less evid
Since the ratio oflC and l t is the collision rate and the
collision rate displays two essentially constant regions se
rated by a transition region, one would expect to see so
reflection of this in Fig. 16. The sharp change in slope forlC
is at approximately the same« as the start of the transition
region in both Figs. 14 and 15. While there is some evide
of a change of behavior forl t at «'10 ~where the transition
region ends!, more data would be required to confirm this

The data in Fig. 16 is for a 98-particle lattice from whic
we infer the behavior of an infinite lattice. To understa
how the features in Fig. 16 depend on lattice size, we sh
some smaller lattices in Fig. 17. As expected,«p accurately
predicts the transition in the two-particle case, but for
particles the transition occurs at a smaller«. Note also that
for N.2 there is a noticeable curvature that changes fr
convex to concave. This feature is still noticeable forN
598.

An idea by Pettini and Landolfi@10# may explain the
physical significance of the change of slope in Fig. 16. Th
studied the time to equipartion of two different coupled a
harmonic oscillator systems and found that there is a cha
in scaling behavior forl(«) beyond the energy density fo

FIG. 16. Lyapunov exponent for 98-particle lattice withl cal-

culated both per unit time and per collision. For comparisonm̄2 is
replotted.

FIG. 17. Lyapunov exponent, calculated per collision, for sm
lattices.
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which all stable regions of phase space disappear. The v
of the energy density at which this strong stochastic
threshold, as they call it, occurs was later verified by
analytical technique@11#.

In the work of Pettini and Landolfi the time scale for
system’s approach to equipartition was studied and two t
scales, one fast and one slow, were discovered. The s
approach to equipartition is characteristic of a system s
after the onset of chaos. In this case chaotic trajectories
fuse through phase space along the intersection of the
moclinic manifold of the large-dimensional phase space, t
is, along the threads of the so-called Arnold web. As
energy density increased, a transition in the time scale
equipartition was observed. This is due to a breakdown
the Arnold web, so that now the system is able to diffu
freely rather than just along the resonances. This transitio
time scales is seen to occur at the same critical dimension
energy as the strong stochasticity threshold.

We have found very similar results for conductivity in th
ding-a-ling system. In Fig. 16 there is a change in the pow
law dependence of our Lyapunov exponent calculations
the same dimensionless energy as a change inlength scale
for convergence to a Fourier law conductivity. Pettini a
Landolfi found that for«.«c the time to reach equipartition
for a system with only a few initially excited normal mode
increased as a power law, while for«,«c the time was in-
dependent of«. We have seen in Fig. 11 that thelengthscale
needed to reach a Fourier law regime had both a power
and an approximately constant region. Note that the in
grable limit for the ding-a-ling system is high energy, rath
than low energy as in the systems studied by Pettini
Landolfi, so the dependence of the transition on energy d
sity is reversed.

Since the strong stochasticity threshold is meant to in
cate the destruction of all stable regions in our larg
dimensional phase space, it is instructive to also look atl for
the two-particle case in Fig. 17, since then we have Poinc´
sections that will confirm this. There is a lot of structu
around«5«p , which corresponds to the dimensionless e
ergy of the destruction of the main fixed point. The so
vertical line at«p does indeed appear to separate differ
kinds of behavior for the Lyapunov exponent. For largerN
the transition« is smaller, converging to the value«c as
shown in Fig. 16.

In Fig. 16 we see that the transition in the value ofm̄2

coincides with the transition inl. In Ref.@10# it was stressed
that equipartition is always reached if one waits long enou
and that the transition is simply one of scale. For our syst
we find that the Fourier law should always be obeyed if o
makes the lattice large enough.

V. CONCLUSION

We have shown that, although CFVV were premature
their declaration, the ding-a-ling system does indeed o
Fourier’s law. In fact, this Fourier law behavior is very ro
bust, so that the system shows normal thermal conduction
all parameter ranges as long as the lattice is long enough
have also gained a better understanding of the ding-a-
model. Its simplicity allowed us to make largely accura
predictions about the shape of the temperature profile,

ll
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5342 56D. J. R. MIMNAGH AND L. E. BALLENTINE
scaling of the conductivity in the stiff-spring limit, the de
structions of the main fixed point in CFVV’s Poincare´ sec-
tions, and the collision rate in the two limits, the stiff an
weak springs.

By extrapolating resistivity to infinite chains, we we
able to show that the conductivity should not diverge for a
finite dimensionless energy«. Then using the square of th
normalized slope of the resistivitym̄2 versus chain length we
were able to quantify the length scale for which a norm
conductivity was reached. From this we found that for s
springs the length of chain needed for normal thermal c
ductivity was insensitive to«, while for weak springs thisNd
was strongly dependent on«, obeying a power law. To get
normal thermal conductivity required longer and longer l
tices for larger«. Thesem̄2 data therefore attempt to quantif
what is meant by the thermodynamic limit.

A dominant theme running throughout this work is t
distinction between the stiff- and weak-spring limits. T
reduced collision rate and ratio of the dimensionless and
tual energy densities most clearly show the extent of th
asymptotic limits and the range of the transition region.
particular, they established that the changes in length sca
the thermal conductivityk coincide with the onset of this
transition.

The graph of the logarithm of the Lyapunov expone
versus the logarithm of« shows a change in slope at th
same value of« as does the length scalem̄2. The importance
ev

tte
y

l
f
-

-

c-
se

of

t

of this result, in addition to being another dynamical meas
that predicts changes in the conductivity of the system
that it allows us to make contact with a theoretical basis
an understanding of the role of chaos in thermal conduc
ity. By drawing analogies with the work of Pettini an
Landolfi @10#, we suggest that there are differences betwe
the thermal conductivity of a dynamical system that
weakly chaotic and one that is totally chaotic. Thermal co
ductivity across the lattice is enhanced when the trajecto
in phase space are allowed to travel across as well as a
the resonances.

We found no transition to infinite thermal conductivity, a
all our calculations show that Fourier’s law will be obeye
for a large enough system. As«→` the length of the system
that is needed to approximate Fourier’s law also diverge
infinity. Since«→` is the integrable limit of the free par
ticle gas, it would seem that the transition from finite
infinite thermal conductivity relies on the presence or a
sence of chaos. Finally, we note that the nonmonotonic
proach of the conductivity to its infinite lattice limit, which
escaped the notice of CFVV, is an interesting phenome
whose explanation is not yet fully understood.
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