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Thermal conductivity in a chain of alternately free and bound particles
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Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
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The thermal conductivitk of a lattice of alternately free and harmonically bound particles placed between
two temperature reservoirs is calculated for various chain lengths and dimensionlesseeneigyound that
Fourier's law is obeyed for al# as long as the lattice is long enough. However, this length scale undergoes a
transition from essentially as independence fog<e to a power-law dependence fer>¢., meaning that
larger lattices are needed to get normal thermal conductivity for lar@éis transition is seen to coincide with
a change in scaling law for the maximum Lyapunov exponerithis behavior ofx is known to correspond
to a transition to total chaos, where all stable regions of phase space have vanished. It is surmised that this
measure of the dynamics can be used as a probe of the Fourier law properties of other systems.
[S1063-651%97)11011-X

PACS numbgs): 05.45:+b, 05.60+w, 66.10.Cb

[. INTRODUCTION The original purpose of this work was to examine in more
detail the relations between thermal conductivity and aspects
Although Fourier's law of heat conductiofmeat current of the dynamics, such as Lyapunov exponents. After repro-
being proportional to the thermal gradigigt very commonly ~ ducing the results of CFVV, and extending them, we were
observed, it is far from clear what properties of the dynami-surprised to discover that the conductivity value that they
cal system are responsible for the observed behavior. “Neibad reported as the long-chain limit was actually only a tran-
ther phenomenological nor fundamental transport theory cafitory plateau. The thermal conductivity does indeed con-
predict whether or not a given classical many-body Hamil-verge to a long-chain limit, but only at lengths considerably
tonian system vyields an energy transport governed by th@reater than those reported by CFVV. Moreover, the ap-
Fourier heat law.” So reads the first sentence of the paper bproach to the long-chain limit can be nonmonotonic as a
Casati, Ford, Vivaldi, and Visschéf] (CFVV), in which  function of length. o _ _
they introduced the so-called “ding-a-ling” model, as the  The ding-a-ling model is introduced in Sec. II of this pa-
simplest system in which the Fourier heat conduction lawPer. In Sec. lll we present results for the thermal conductiv-
could be demonstrated. The model consists of a onei_ty, which confirm the earlier results of CFVV, as far as they
dimensional chain of atoms, alternately free and harmoniWent, but also show surprising results in regions that they did
cally bound, which interact through hard elastic collisions.not explore. We treat the dependence of the conductivity on
CFVV demonstrated that this model exhibits chaotic dynamhe spring stiffness, temperature, and chain length in consid-
ics and presented numerical evidence that, for moderatelgrable detail. In Sec. Il we study the dynamics of the model,
long chains, the thermal conductivity approaches a value inlllustrating the transition between the weak-spring and stiff-
dependent of the length of the chain. spring limits in several different ways. Finally, we summa-
The numerical study of the relation between dynamicdize the conclusions.
and nonequilibrium statistical mechanics began with the
work of Fermi, Pasta, and UlagrPU), lucidly reviewed by [l. THE DING-A-LING MODEL
Ford[2]. FPU studied a harmonic chain with weak nonlin-
earity. Instead of the expected equipartition of energy amon
the modes, they found a recurrent behavior, which is no
known to be related to the Kolmogorov-Arnold-Moser
(KAM) theorem, but which was originally very puzzling. N
Because of the diffic.ulties found by FPU and others, many H= } 2 (v2+ w?x?) + (hard point core, 1)
people came to believe that normal thermal conductivity 2=
could not occur in one dimensio8]. However, Mokross
and Biitner[4] gave evidence that the diatomic Toda latticewhere w; equalsw for eveni and zero for odd and all
exhibited a transition to normal thermal conductivity, which particles have unit mass. Two versions of this model will be
later was verified by the more detailed numerical investigastudied. To calculate the thermal conductivity, we use an
tion of Jackson and Mistriotis]. The most persuasive work, open system, a chain with a free particle at each end, which
however, was that of CFVV who gave arguments for a direcinteracts with a thermal reservoir. To calculate the Lyapunov
connection between normal thermal conductivity and dy-exponent, we use a closed ring of particles. The open chains
namical chaos in a very simple system. They also showedontain an odd number of particles and the closed rings con-
that the value of the thermal conductivity given by thetain an even number of particles.
Green-Kubo formula is in agreement with that obtained di- The dynamics of a closed ring depends on only a single
rectly from numerical simulation. dimensionless parameter= E/ »?l2, whereE is the average

The ding-a-ling lattice consists of a set of alternately free
nd bound particles. The Hamiltonian for tié-particle
ding-a-ling model, as described by CFVV, is
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energy per particle anl is the lattice spacing. CFVV fik Xi(tioj)_xi+1(t?j): 1, (4)

andl, and usew as a variable parameter. We usas our

fundamental parameter and have confirmed the scaling by

varying bothE and » in some of our calculations. the term 1 being the lattice spacing. Then we select the soon-
In the case of the chain interacting with reservoirs, theest collision time as the actual collision time for the system.

total energy is not fixed, so we must infer its average valud 0 complete the collision we must evolve the system to time

from the temperature. The average temperaiygeis mid- 7| and then exchange the velocities of the particles involved

way between the temperature of the left and right reservoir the collision. If we define the systems stéateade up of all

T, andTg. If we assume equipartition then the average enits position and velocity coordinateafter collisionj by I'?,

ergy of the free particles i$T,,, and the average energy of then

the bound particles i$,,. This leads to an average energy of

a system particle of T,,. So the quantity F?=f(l“j°_1) ©)
3T

T a2 (2 maps the physical system from the time of system collision

j—1 to system collisionj and swaps the velocities of the

. . air of particles involved in the collision.
is used to parametrize our open systéne setl,=1 and P P

Boltzmann’s constaritg=1).

The parametee should be regarded as a conventional ). cALCULATION OF THE THERMAL CONDUCTIVITY
reparametrization of the temperature as a dimensionless en- .
ergy. It is only approximately equal to the energy density A. Method of calculation
(more precisely, the dimensionless energy per pajtidlee The calculation of the thermal conductivity for the system
average energy of a free particle3i3. The average energy is performed in a manner similar to that described by CFVV
of a bound particle ranges fromin the low-density limit to [1]. A temperature gradieri T is placed across the lattice
3T in the high-density limit, where collisions prevent the and the energy flux is then monitored. The thermal con-
spring from stretching very far. As a result, the true energyductivity k is —J/VT. To establish the temperature gradient,
density ranges frone to & as we go from the low- to the heat reservoirs at different temperatures are placed at either
high-density limits. No confusion will arise provided we re- end of the lattice. These are random number generators that
gard the values of for an open chain as merely reexpressingtake the particles that enter the reservoir and eject them back
the temperature in dimensionless units. Only when a resulhto the system with a velocity of the appropriate distribu-
computed at constari is compared with one computed at tion. The probability distribution used i (v)=(|v|/
constantT can any ambiguity of interpretation arise. This is T)exp(—v%/2T), which is the velocity distribution for par-
done in Fig. 16, where it does not cause any trouble. ticles ejected from a pin hole in the side of an oven. The

Between collisions the motion has an analytic solution, salifference between the energy of the particles entering and
in order to evolve it forward in time one must simply calcu- leaving during themth reservoir interactiol\ E,, is used in
late the time of the collision events and then evolve the systhe calculation of the flux
tem from collision to collision. This means that the system is
more naturally described in terms of a mapping than as a 1
solution to a Hamiltonian with infinite potentials to represent Jn:t_
the hard collisions. However, since many of the physical
guantities are calculated per unit time, rather than per colli-
sion, it is necessary to have a mixed notation. A superscripifter n reservoir interactions. After eliminating the initial
0 will identify quantities measured just after the collision andtransients, a sufficient number of collisions are calculated
this quantity will have g subscript to identify which colli-  such that),,~J.,. The value of the local temperature is cal-
sion. For instancex;} andv{} represent the position relative culated as twice the kinetic energy of each particle. Then we
to its lattice site and velocity for particleat the time just assume that the position of the particles is, on average, at its
after collision j, while x;(t) andv;(t) represent the same lattice site and perform a linear fit to the data. The slope is
quantities at the arbitrary time measured relative to the first the effective temperature gradieVil .. It will, in general,
collision. The evolution of the position of particieoetween  be different from the applied temperature gradi€ilt,,, be-

2—1 AE,, (6)

n

collisionj andj+1 is cause there is a temperature jump at the ends of the lattice,
similar to a Kapitza resistance. They function merely as the
Aﬂsir{w(t— i)+ ¢ﬂ], i even interface between the reservoir and the system. For this rea-
Xi(t)= 3 son the end particles are never included in any of Wilig;

vi(t=m)+Xj, i odd calculations.

To compare the results for different parameter values, it is
for 7j<t<rj,;, where A and ¢; are the amplitude and useful to consider dimensionless quantities. For example,
phase of the oscillator ang is the time of the collisiorj. In J/w? is a dimensionless flux and=k/w is a dimensionless
order to calculate the time of collision we must find the thermal conductivity. We have found, as expected, that we
possible collision timetioj for each particle pair andi+1 obtain approximately the same for different T,, and o if

such that they are chosen such thatis constant.
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FIG. 1. Comparison of dimensionless thermal conductivity

1
with the CFVV results fow=1 (¢=1.5). 0 oo S EEOR B E—

B. Comparison with CFVV

CFVV presented results for the thermal conductivity as a

function of the chain lengtftheir Fig. 3. We compared data &

from their plot with our own data for the equivalent value of

¢ and with the temperature of the left reservjr set to 2.5 €

and the rightTg set to 1.5. Our datéFig. 1), clearly agree eees—o 00008 5=
with the results of CFVV. However, it is premature to con- T o m
clude, as CFVV did, that this corresponds to the asymptotic N

limit of the thermal conductivity. In Fig. 2 we show that this o i _

is only a minimum and that bulk thermal conductivity cannot FIG. 3. Thermal conductivity for various numbers of particles
be said to have been observed uhti+200. The minimum is

deepest for large energy densities and disappears entirely for ) )

very small density, as can be seen in Fig. 3. We have calculate#(T) directly by varying the central

CFVV also produced a table &f J, andVT values for temperature(Fi_g. 5. To ensure that the variation &{(T)
»=10. These values were also confirmed by our calcula@dlong the chain does not affect our results, we use a small

tions. temperature differenc@T. In Fig. 5 we see results for
chains of 9 and 31 particles withT=0.2. The results are
different from what one might expect for an anharmonic lat-
tice. For example, the work of Maeda and Munakgd

If Fourier’s lawJ= —kVT is valid, we would expect that, shows a different relationship for smal| k(T)T~*2 This
after initial transients have died out, there would be a Uni-is because they were mode”ng FP[_Bs|attice (harmonic
form gradient of temperature along the chain. Figure 4 showgattice with quartic anharmonicity For smallT, the anhar-
that the local temperaturecomputed as twice the average monic term will not contribute and one expects a diverdent
kinetic energy of each partidlectually has a smooth non- for an integrabletharmonig lattice. For the ding-a-ling lat-
linear variation with position. We interpret the curvature astice, as the energy is reduced the bound particles are more
being due to the temperature dependence of the conductivijghtly bound to there sites. This attenuates solitonlike en-
k. If k increases Wltﬁl', then the decrease k(T) from left ergy transport, so one does not exﬂem diverge asT—0;
to right along the chain must be compensated by an increasg fact, we see&k—0 in Fig. 5. On the other hand, the high-

C. Temperature dependence ok

in the magnitude oV T. T regime should produce divergekisince, in this limit, the
50 : | : : : : lattice behaves like free particles on a wi@n integrable
systen.
15 B . As pointed out by Nishiguchi and Sakurfig, the curva-
w0l i ture in the temperature profile can be a source of error in the
o o) calculation ofk. In order to measure its effect we tried re-
B 00 - ducing the applied temperature difference. This incurred a
" o greatly increased convergence time and was only practical
30 - - . .
e for short lattices. In any case, the computedid not vary
2% Fo - appreciably. For longer chains a better solution was to in-
2 é) 1 clude only the central 60% of the particles in the calculation
of VT. This section of the lattice has a much more lin€ar
15 L . L L L ! profile and thus a more accurate valuekotould be calcu-
0 100 200 300 400 500 600 lated.

Number of Particles in Chain,

From Fig. 5 we see that the region between 1.5 and
FIG. 2. Thermal conductivityc for o=1 (¢=1.5) with very 2.5 is approximately linear and we shall use this to predict
large lattices. the curvature ofT(x) in Fig. 4. Following a procedure de-
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FIG. 4. Temperature profile with =2. The solid line is a linear
fit through the data and the dashed line is a fit using (E#). with
B the only variable parameter.

scribed by Gebhalfft3], we approximate&(T) as

k(T):kr+B(T_Tr)a (7)
whereT, is the temperature of the rightmost{N—1) par-
ticle used in the calculation & andk; is k(T,). From Fou-
rier's law we have
X
f Jdx,
2

where the leftmostiE2) particle involved has a tempera-
tureT,. SinceJ is constant along the lattice, we have

T
f k(T)dT' =— (8

T

X
—J Jdx' =-J(x—2) 9
2
and using Eq(7) we get
T 12 T
f K(T)HdT' =|k T +8 T—TFT’> (10
4 T T T T T
N
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FIG. 5. Value ofk as a function ofT, for ®«=2 and chain
lengths of 9 and 31 particles withT=0.2. The dashed line is a
linear fit through the points between 1.5 and 2.5Ko¢ 9.
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FIG. 6. Resistivity for long chains and large The solid line is
a least-squares fit fdd~2<0.12.

We now use these two equations to solve T¢Kk),

B

11

2 x-2
52

T(x)=— 7i[ ¥ -2

where y is k,/8—T,. Notice that the fit forT is exact for
x=2 (the left end, while k is exact forT=T, (the right endl.

The temperature profile data of Fig. 4 was fitted to for-
mula (11), using B8 as the only adjustable parameter. The
nonlinear least-squares fit yields the vagie 3.0. This may
be compared to the slope of théT) curve in Fig. 5 at the
central temperaturé,,= 2, which yieldsg=2.8. The agree-
ment between the two independent determinationg o
satisfactory.
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FIG. 7. Resistivity for long chains and mediugn Only every
second data point is displayed fer-4.5 to make the graph more
readable. The solid line is a least-squares fitNor*2<0.12.
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D. Long-chain limit

In addition to confirming the results of CFVV, we wishto  FIG. 10. Resistivity for infinite chaingthe intercept in Figs.
determine the range of parameterandN over which Fou-  7-9. The solid line is a least-squares fit forxk <10. The dashed
rier's law applies. Although Fig. 2 shows clearly that a con-line is the analytic result from Eq24).
stant value ofk has been reached in this case, it is more
effective to plot the thermal resistivity= 1/« as a function positive or negative. In Figs. 7 and 8 we can say with con-
of N™2. We useN ™' rather than M as the variable be- fidence that, for these values of we have a positive inter-
cause it yields a good linear fit for largé (see Figs. 6-9  cept. We can also see a very distinct maximumpinfor

So the linear function some values of, which corresponds to the minima in Fig. 3.
1 The maxima have disappeared in Fig. 9.
p(N)=uN""+p., (12 The intercepts in Figs. 6-9 tell us how the conductivity

. . L . behaves for an infinite lattice, so it is useful to plot it as a
is used to describe our large res',slt,';"ty data. A positive g, tion ofe, as in Fig. 10(We have not included the in-
Intercept c_)f thep axis (’.Jm>.o). forN ._>O. implies thqt the tercepts from Fig. 6 since they are not accurate engWye.
conductivity has a finite limit for arbitrarily long chains. A ., cee quite clearly the change in behavior from small
Z.er(,) ||nterceptk|jmpl|es tTat dlverggs a.s\lﬁw and sc: dF_ou-l (stiff spring9 to large ¢ (weak springs The power-law
rlhers %V.V wou ant app y.f.A.n;gelltn;e mtircept Wouh IMPYY variation in P for e>¢. implies that infinite conductivity
that « |ver]9es or some finit&. In I"ft’ Gowevelr, the ap'hshould occur only in the limit of vanishing spring constant,
pearance of a negative intercept in Fig. 6 merely means thafy;qp, is the integrable limit of the free-particle hard point
the data are insufficient to resolve an intercept very close t%as We introduce .=0.04 at this point since it functions
. -=0.
Zero. well as a benchmark for the breakdown of the stiff-spring

. The plots of resisti_vity(Figs. 6-9 give_: a fairly complete limit. Its value is derived from the scaling properties of the
picture of the behavior as we vagy. Figure 6 shows the

weak-spring limit, in which we might expect Fourier’s law to

break down. These data demonstrate the limit of our numeri- 10° pr—
cal capabilities, since we would need to calculat®r much .
. . . . 10%
longer lattices in order to resolve whether the intercept is -
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Lo, 8 941077 © FIG. 11. Square of the normalized slope in E24). The open

circles correspond to a positive slope while the filled circles corre-
FIG. 9. Resistivity for long chains and very small The solid  spond to a negative slope. The dashed line is used only to guide the
line is a least-squares fit fod < 0.32. eye.
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Lyapunov exponent and is discussed fully in Sec. IV E. We 2

will put a vertical bar in our plot at ., to distinguish the two k=\/ze. 17
regimes: stiff and weak springs.

The slopeu changes sign, withu=0 for ese.. If we A petter approximation is obtained if we average the energy

rewrite Eq.(12) in a normalized form currentd in Eq. (15) over the distributions of , andv_ .
_ — The appropriate distributioP+(v) is the probability that a
p(N)=uN""+1, 13 free particle will transit at speed between two bound par-

_ — — o ticles. The Boltzmann distribution, which is the probability
where p=p/p.. and u=pu/p.., then forp(N) to be within  nat 5 randomly selected particle will have instantaneous ve-

someé of 1 we must takeN>N, locity v, differs from P+(v) by a factor proportional to the
2 transit time ¢ ~1). Hence the appropriate distribution is
72
Ns = ;) (14) |
Pr(v)= ?e( ot (18)

Figure 11 shows that as increases, foe>¢., we need

increasingly larger lattices to approximate the asymptotidJpon simplifying Eq.(15), we obtain the average energy
limit; however, fore<e. only short lattices are needed and current

N is not strongly dependent an A dashed line is used in 1

Fig. 11 to emphasize that the slope does go through zero and T2 _ 2

show the dominant features. Fourier’s law is always obeyed (9 4[<U+><v‘> (0 )=, (19

provided the lattices are long enough. o )
where the distributions fov . andv _ are given by Eq(18)

with temperature¥ , andT_, respectively. The calculation

of the averages in Eq19) are
It is possible to deduce the value of the thermal conduc-

tivity by means of a simple argument, which should be valid (v¥)=2T, (20
in the limit of very stiff springs on the bound particles. We
assume that each bound particle behaves as a harmonic os- [7T
cillator with a Maxwellian velocity distribution governed by (v)= o
the local temperature. A free particle bounces back and forth
between two bound particles. At each elastic collision it ex-so we have
changes velocities with the bound particle and so on average
gi(;::mes energy from the higher- to the lower-temperature J=— \/2[T+T1’2—T£/2T].
Let v, be the speed of a free particle traveling in the
positive directiondown the temperature gradi¢@indv _ be  If we now expand) in a Taylor series iV T, we have
its speed of return in the negative direction. The contribution
to the energy flux from this round-trip will be equal to the J=— /W—TVT' (23)
difference between the energies carried in the two directions, 8 ’
divided by the time for the round-trip,

E. Stiff-spring limit
(21

(22

this results in an approximate value for the conductivity of

S 02— 302 5 k=7 T/8 or in dimensionless variables

2 N 2 -
vy v_ K=\/§8. (29

The factor of 2 in the denominator comes from the distancerhese are compared with the results of the numerical simu-

between the bound particles, which is two lattice units. lations in Fig. 10, where one can see approximate agreement

We can estimate the conductivity if we replace the veloci- i, the slope corresponding to the exponen} of Eq. (24).
ties in Eq.(15) by their rms averages, which are related to

> - SO The essential assumption in this simple argument is the
the temperature by equipartitiov 2=3T (Boltzmann’s

HUUTh neglect of correlations among the particles. This assumption
constant has been set to unityvriting the temperature of acomes more reasonable in the stiff limit, when the bound
the left and right bound particles &, =T—VT and T_

particles oscillate very rapidly compared to the motion of the

=T+ VT and neglecting the difference b_eltyzve@m andv_  free particles. But the systematic difference between(4).
in the denominator, we obtaifi= —VT/2T "% whence the 3 the numerical results in Fig. 10 indicates that correlation
conductivity becomes effects are not entirely negligible, even in that limit.

k=— % = \/g (16) IV. ANALYSIS OF THE DYNAMICS

In order to demonstrate the role of chaos in establishing
In terms of our dimensionless parametersk/w and e Fourier’s law of heat conduction, we need to study a system
=3T/4w?, this becomes that has both an integrable and a nonintegrable limit. The
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FIG. 13. Two particles on a periodic ring. The solid circle rep-

N / -
[ AN / resents a bound particle, while the empty circle represents a free
particle.
left L L L

Particle trajectories cannot cross each other. They merely
exchange velocities in elastic collisions. The apparently
smooth lines, in Fig. 1), from one end of the lattice to the
other, represent the transmission of energy without it being
scattered or diffused. These solitonlike pulses are typical of
the weak-spring limit. As the spring constant increases, the
trajectories of the bound particles become more curved, as
shown in Fig. 12b). This causes the solitonlike pulses to
propagate along curved paths in the space-time diagram.
Sometimes the spatial direction of propagation is reversed,
corresponding to the reflection of solitonlike pulses. Energy
from the pulse is exchanged with the potential energy of the
0 1 2 3 4 5 6 7 springs, making solitonlike pulses less effective as a mecha-

Time nism of energy transport. In the stiff-spring linikig. 12c)],
() the pulses are effectively destroyed and diffusive energy
transport is dominant. The transition between solitonlike
pulses and diffusion being the dominant energy transport
mechanism will clearly depend on the length of the lattice.
The weaker the spring, the longer the lattice must be in order
for energy diffusion to dominate. This is consistent with the
results of Figs. 6—9 and 11, which show that as the spring
N~ SN becomes weaker, longer lattices are needed to approximate
\ ) the bulk conductivity limit.
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0 2 4 6 8 10 B. Phase space

Time Poincaresections give a strong visual indication of the
FIG. 12. Lattice dynamics for a seven-particle chain with differ- chaos of the Phase Space. CF\./V present Pomx_;a(_mo_ns,
entw: (8 ©=0.5 (6=6.0), (b) w=2 (¢=0.375), and(c) w=5 fpr a tvv(_)—pgmcle system, show[ng the KAM tori c_|rcl|ng a
(£6=0.06). The solid lines represent the paths of the free particlediX€d point in the surface of sections. The destruction of this
while the dashed lines represent the bound particles. fixed point, with increasing, is an indication of the transi-
tion between two dynamical regimes.

. . . . . From the Poincarsection of CFVV, we know that at the
dmg—a—lmg 'T”Ode' becom_es m_tegrablg in the zero SPrNYtiyed point the velocity of the bound particle is equal to the
ponstant limit. As the spring stlffqess increases, the dynf"‘.mﬁegative of the velocity of the free particle and the section is
ics becomes more chaotic. We wish to observe the transitiop  .h that the particles have just collided. The sign of the
bgtween two SUCh regimes and to cor_re_late the dynam'cﬁelative velocities, as defined for the section, is such that the
with the behavior of the thermal conductivity. The transition articles would collide on the left of the loop, as in Fig
between the two regimes is continuous, rather than sharp, b ' .

. . s ’ a). After colliding they exchange velocities and swing
evidence for it can be found in many different aspects of th%round toward the right. By symmetry the particles must

dynamics. both be on their lattice sites at some intermediate time, as in

Fig. 13b). Proceeding to the right, the particles collide again

[Fig. 13c)] and retrace their pathes back to the state de-

) ) ~ scribed by Fig. 1&). The fixed point thus maps the system
The ding-a-ling model was expected to support a Fouriefrom a configuration similar to that shown in Fig.(&Bon to

law conductivity because the energy transport via solitonlikgtselt.

pulses should be suppressed by the phase randomization 1o analytically explain the fixed point's destruction we

caused by the oscillating bound particles. In Fig. 12 we Se@eed to evaluate the position of the fixed point in phase

the displacement of particles as a function of time, with thespace. Since the particles have just collided, their positions

“left” and the “right” labels on the y axis marking the myst satisfy Eq(4),

position of the corresponding reservoirs and the ticks mark-

ing the lattice sites. Xp—X¢=1, (25

A. Particle paths
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FIG. 14. Ratio of the true energy density 4ofor a 99-particle FIG. 15. Reduced collision rate per particle for a 98-particle
reservoir system. periodic ring.
wherex; andx are the position of the free and bound par- E/w?
ticles relative to their respective lattice sites. Also, the ve- a= ; (30)

locities are equal in size but opposite in direction, so

whereE is the energy per particle, we will have a measure of
which regime we are in for a particular In Fig. 14 we can
h q h lociti f the f 4 bound see that there is a transition region aroundl separating
wherev; andv,, are t.e. velocities of the free an 0UNG the two limits. The total energy of the system can be attrib-
particles after the collision. From energy conservation We o4 tg three different sources. In the stiff-spring lirhiof
have the total comes from the kinetic energy of the free particles,
1 from the kinetic energy of the bound particles, anfitom
E—E 2 l 2 1 2,2 _ the potential-energy of the bound particles. In the weak-
=0t vt -o Xb—2, (27) . .. . . .
2 2 2 spring limit (e—) the potential energy contribution be-
comes negligible. This leads t@..=2 in this limit and a
where we have made use of the initial condition on the en=1 in the opposite limit where the potential energy is not

—Uf=Up=0, (26)

ergy as specified by CFVV. Solving for yields restricted.
From Fig. 14 we see the value afis slightly greater than
1,,\" 1 in the stiff-spring limit, which may be attributed to the
U:(Z_ 5@ Xp (28)  temperature dependance sf This causes the average tem-

perature of the lattice to be larger than the average of the two

The timet to travel from(b) to (a) is the same for both reser\_/0|rsTm._ . .

; This quantitya plays a role in our calculation when we

particles, hence . o . .
wish to know the temperature of a periodic chain because in
this case we specify the energy via the initial conditions not

Xf 1 a)Xb .. . e
t=— = "arctan—. (29)  the temperature. Rewriting EB0) using the definition ot
v w v [Eg. (2)], we have

Using this with Egs. Eq(28) and (25) and solving numeri- 4E

cally for v, X;, andx, we can predict the position of the Tm=3—. (31
fixed point in phase space. There are no real solutions for @
£>0.151(corresponding taw>2.57 for an energy per par-

ticle of 1 as specified by CFVV which is consistent with D. Collision rate

i 2 conventent marker to dentiy the valuessofor whion T collsion rate also shows a transiion region that di-
: . vides the two asymptotic limits. The definition of the colli-
we may expect to see changes in the properties of the physg—ion rate per particle is
cal quantities of our system. It will be particularly relevant
measurements made to short chains. 1
R=— (32
C. Energy density

As mentioned in Sec. Il, the true energy density is equalvhere 7 is the typical time between collisions and each col-
to € in the stiff-spring limit, but is only? of & in the free lision takes place between two particles. In order to deter-
particle limit. By calculating mine the asymptotic limits we need to estimate
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In the stiff-spring limit ofe —0, with a free and a bound E. Lyapunov exponents
particle originally at their respective origins, the position of

the collision is determined by the amplitude of the oscillator..a1or of the onset of chaos and would appear to be an ideal
That is, since the oscillator's deviation from equilibrium is ¢4 gjigate for a dynamical indicator of the transition to nor-

smgll-, due to the strong spring, we can assume the}t a tyIOiC%al thermal conductivity. We see from the definition)af
collision also takes place near the equilibrium position of the

The maximum Lyapunov exponehtis a common indi-

oscillator. We can estimate the time between such collisions 1 [|P(Ig+ 6r,t) — (T, )|
as the time it takes the free particle to travel from its lattice A= lim —In Ex , (38
site to the bound particles lattice site and back. To do this we ar-o

make use of the collision definitiof@),

that\ is a long-time average measuring the exponential rate
Z_ozl, (33 of separation of trajectories that are initially close in phase
2 space. So we have>0 in a chaotic region and=0 in a
stable region. However, the relevant time scales for the con-
wherev; is the velocity of the free particle and the time  duction of heat via a lattice are the time for a particle to cross
includes both the time to travel from the origin to the colli- a lattice spacing or the transit time of solitonlike pulses
sion and back. We have chosen particte be a free particle across the lattice. These times are short, so the relevance of
and particlei+ 1 to be a bound particle, so is a positive  the long-time average on its own is uncertain, but will be
quantity, and from equipartition of energy we hawge  made clear in what follows.
=T, This leads to a collision rate d&y=T/4 in the
stiff-spring limit. 1. Calculation of A
We now approximat&,, , the collision rate in the —«
limit. The bound particle behaves like a free partiale=

Ut

The Lyapunov exponent was calculated on a per collision
basis\Ac, which eliminates some technical problems with
—vp=\Ty; thus attempts to calculate the Lyapunov exponent on a per unit
time basisk;. The definition of\ is

T T
Viz—Ups=1 (39
2 e 1 ([T(Tg+ 8T) - TO(Ty)|
Ac= lim ﬁln Ex , (39
which leads to a value d®..= \T,/2. ar—0

n—o

We would like to remove the dependence present in the
limiting values in the form ofyT,, Since it iSE and notT,

that we specify in the closed system, we define the reduceyhere n is the collision index_. The_ calculation of the
collision rateR as Lyapunov exponent for a map is outlined by Rasbaai

Briefly, one evolves both a fiducial and a perturbed trajectory
from just after one collision to just after the next collision.

R R Then one renormalizes the perturbed trajectory with a scale
R= E_ 3 ' (35 factor. The maximum Lyapunov exponent is simply the sum
—aT, of the logarithm of these scales divided by the total number
4 of collisions.

The problem with the direct calculation &f results from
where we made use of E¢31). This quantity is calculated the fact that the time between collisions for the perturbed and
for a 98-particle chain in Fig. 15 and shows two distinct fiducial trajectories will be slightly different. This may make

limiting values. Using Eq(35) we have estimates &% in the the renormalization step impossible without having the par-
two limits ticles pass through one another, which is forbidden. We have

estimated\, by calculating the product of - and the colli-
sion rate. This is an acceptable approximation as long as the

1 1 difference between the time of collision for the perturbed and

Ro= 3 B \/TZ (36) fiducial trajectories does not contribute on average.
4\/ - ay The numerical computation of can be tricky. The com-
4 puted value may appear to be converging to a limit, only to
abruptly shift to another value. This sequence of apparent
1 1 convergences may depend on the initial conditions, even
R,= S (37) within a single chaotic region of phase space. Only when the
3 \/E trajectory has sampled all of the available phase space can
2\ —a., we be sure of true convergence and that is hard to ensure for
4 a many-particle system. We have verified that our results for

\ are not sensitive to changes in the initial conditions, size of
which can be seen to agree well with the asymptotes in Figthe displacement of the perturbed trajectory from the fiducial
15. The discrepancies are probably due to the neglected carajectory, and the type of norm used to measure the separa-
relations. tion between trajectories.
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which all stable regions of phase space disappear. The value

10 p—r——r—r——r—r———————————7 10°
Emh;ﬂ ' ' ' o _124 of the energy density at which this strong st_o_chasticity
L T . 3@ ke threshold, as they call it, occurs was later verified by an
RN 1. analytical techniqué§l1].
PN o0 © ﬂ*+++¥~»~-._i o In the work of Pettini and Landolfi the time scale for a
oo ;"“"’W»«x;;:@\_ o 100 system’s approach to equipartition was studied and two time
L e o Ms«éﬁx ______________________ 310 scales, one fast and one slow, were discovered. The slow
GOLE X Ao @ * o * \%_ 10-2 approach to equipartition is characterlstlc Qf a system soon
o 52 b5y *l. 6. 1073 after the onset of chaos. In this case chaotic trajectories dif-
(1YL NPT TP SO Y EEPERY R B RS fuse through phase space along the intersection of the ho-

T moclinic manifold of the large-dimensional phase space, that

is, along the threads of the so-called Arnold web. As the
FIG. 16. Lyapunov exponent for 98-particle lattice wkhcal-  energy density increased, a transition in the time scale to
culated both per unit time and per collision. For comparigdnis  equipartition was observed. This is due to a breakdown of
replotted. the Arnold web, so that now the system is able to diffuse
freely rather than just along the resonances. This transition in
2. Results for thek calculation time scales is seen to occur at the same critical dimensionless
the€Nergy as the strong stochasticity threshold.

We have found very similar results for conductivity in the
ng-a-ling system. In Fig. 16 there is a change in the power-
law dependence of our Lyapunov exponent calculations at
the same dimensionless energy as a chandength scale

Like the energy density and the collision rate,
Lyapunov exponent displays a change in behavior during thg.
transition between the two limits. In Fig. 16 we see that !
obeys a power law with a sharp change in slope. A power
law fit of the data for the two limits is also shown in Fig. 16 . = 7
to emphasize the behaviox, also obeys a power law, with for convergence to a Fourier Iayv conductivity. Eetu_n; and
some deviations; however, the deviations are less eviden#‘.andmf' found_ that fom>scthe_:t_|meto re_ach equipartition
Since the ratio ofA¢c and \; is the collision rate and the for a system with only a few |q|t|ally excited T“’”"a' m_odes
collision rate displays two essentially constant regions Sepdpcreased as a power law, while fer ¢ the time was in-

rated by a transition region, one would expect to see Somgependent of. We have_seen in Fig. 11 that trengthscale
reflection of this in Fig. 16. The sharp change in slopexfer needed to reach a Fourier law regime had both a power law

is at approximately the same as the start of the transition and an approximately constant region. Note that the inte-

region in both Figs. 14 and 15. While there is some evidenc rable limit for the d‘r?g'a'"”g system is high energy, rqther
of a change of behavior fox; at e~ 10 (where the transition an lO\.N energy as in the systems stupl_led by Pettini and
region ends more data would be required to confirm this. Landolfi, so the dependence of the transition on energy den-

L : X . . sity is reversed.

The data in Fig. 16 is for a 98-particle lattice from which . o . o
we infer the behavior of an infinite lattice. To understand atimt(;]eetr(]jissttrrgg?or?m(;‘hZslltlcsl,gtslrgers:oilcc)jnlss meiﬂtr t(I)aIrm(jel-_
how the features in Fig. 16 depend on lattice size, we sho dimensional phase space, it is instructivg to also look far ’
some smaller lattices in Fig. 17. As expecteg,accurately the two- artigle casepin Fi' 17, since then we have Poincare
predicts the transition in the two-particle case, but for 98 WO-p . 1 F1g. L7, .

: " sections that will confirm this. There is a lot of structure
particles the transition occurs at a smakerNote also that

for N>2 there is a noticeable curvature that changes fromarounds=sp, which corresponds to the dimensionless en-

) S . ergy of the destruction of the main fixed point. The solid
convex to concave. This feature is still noticeable for . . . i
o8, vertical line ate, does indeed appear to separate different

An idea by Pettini and Landolff10] may explain the kinds of behavior for the Lyapunov exponent. For larter

physical significance of the change of slope in Fig. 16. The)}he trar_13|t|9ns is smaller, converging to the value, as
. . - ; shown in Fig. 16.

studied the time to equipartion of two different coupled an- . L —

harmonic oscillator systems and found that there is a change !N Fig. 16 we see that the transition in the valueof

in scaling behavior foi(¢) beyond the energy density for coincides with the transition in. In Ref.[10] it was stressed
that equipartition is always reached if one waits long enough

and that the transition is simply one of scale. For our system
we find that the Fourier law should always be obeyed if one
makes the lattice large enough.

N V. CONCLUSION

We have shown that, although CFVV were premature in
their declaration, the ding-a-ling system does indeed obey
I o e b ] Fourier's law. In fact, this Fourier law behavior is very ro-
PSR S SR TR FIDT S I S i SR bust, so that the system shows normal thermal conduction for

1o~ 1072 1072 10 10° 1! 102 all parameter ranges as long as the lattice is long enough. We
have also gained a better understanding of the ding-a-ling

FIG. 17. Lyapunov exponent, calculated per collision, for smallmodel. Its simplicity allowed us to make largely accurate
lattices. predictions about the shape of the temperature profile, the
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scaling of the conductivity in the stiff-spring limit, the de- of this result, in addition to being another dynamical measure
structions of the main fixed point in CFVV’s Poincasec- that predicts changes in the conductivity of the system, is
tions, and the collision rate in the two limits, the stiff and that it allows us to make contact with a theoretical basis for
weak springs. an understanding of the role of chaos in thermal conductiv-

By extrapolating resistivity to infinite chains, we were ity. By drawing analogies with the work of Pettini and
able to show that the conductivity should not diverge for anyLandolfi [10], we suggest that there are differences between
finite dimensionless energy. Then using the square of the the thermal conductivity of a dynamical system that is
normalized slope of the resistivijy? versus chain length we weakly chaotic and one that is totally chaotic. Thermal con-
were able to quantify the length scale for which a normalductivity across the lattice is enhanced when the trajectories
conductivity was reached. From this we found that for stiffin phase space are allowed to travel across as well as along
springs the length of chain needed for normal thermal conthe resonances.
ductivity was insensitive te, while for weak springs thisl 5 We found no transition to infinite thermal conductivity, as
was strongly dependent an obeying a power law. To get a all our calculations show that Fourier's law will be obeyed
normal thermal conductivity required longer and longer lat-for a large enough system. As- o the length of the system
tices for larger. Theseu? data therefore attempt to quantify that is needed to approximate Fourier's law also diverges to
what is meant by the thermodynamic limit. infinity. Sincee— is the integrable limit of the free par-

A dominant theme running throughout this work is theticle gas, it would seem that the transition from finite to
distinction between the stiff- and weak-spring limits. Theinfinite thermal conductivity relies on the presence or ab-
reduced collision rate and ratio of the dimensionless and acsence of chaos. Finally, we note that the nonmonotonic ap-
tual energy densities most clearly show the extent of thesproach of the conductivity to its infinite lattice limit, which
asymptotic limits and the range of the transition region. Inescaped the notice of CFVV, is an interesting phenomenon
particular, they established that the changes in length scale #fhose explanation is not yet fully understood.
the thermal conductivityc coincide with the onset of this
transition. . ACKNOWLEDGMENT
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